Evaluation of GCOM-W1 standard products

Masahisa Kubota, Atsushi Okuro, Tsutomu Hihara (Tokai University) and Hiroyuki Tomita(Nagoya University)

IOVWST Meeting 2013 May 6-8 , 2013 Kailua-Kona, Hawaii, USA

- 1. Background
- 2. Data
- 3. Comparison with buoy data
- 4. Intercomparison with other products
- 5. Summary

Background

Global Change Observation Mission(GCOM) mission is a two series of satellites, GCOM-W for observing water circulation changes and GCOM-C for climate changes. The GCOM-W1, Japanese name is SHIZUKU, is the first satellite for the GCOM-W series and was launched on May 18, 2012.

http://www.jaxa.jp/press/2013/01/20130125_shizuku_e.html

Background

The Advanced Microwave Scanning Radiometer 2 (AMSR2) was loaded onto the GCOM-W1. Sea surface temperature(SST), sea surface wind(SSW) speed and precipitable water are derived from brightness temperature data observed by AMSR2.

http://www.jaxa.jp/press/2013/01/20130125_shizuku_e.html

Evaluation of GCOM-W1 SST and SSW products

1. Comparison of standard products with in situ data

2. Global intercomparison of standard products with other products

1. Comparison of standard SST and SSW products with in situ data

TRITON buoy data

	Temporal resolution	Height (depth)	Accuracy	Period
SSW SST	Hourly average	3.5 m -1.5 m	0.3 m/s 0.002°C	Jul. 2012– Jan. 2013
	Location of TRIT	ON buoy	Height co 3.0 from	orrection by COAR 3.5 to 10.0 m
15° 				
10° 5° 0°			Since the estimated 10 minut the hourl at 35 min	hourly value is by averaging every es value, we assume y value to be a value utes.
-5°	140° 145° 150°	²⁷ 155° 160°		

Satellite data

Satellite SSW data

Satellite SST data

Sensor	Level	Version	提供
AMSR2	2	0.0	JAXA
AMSR-E	2	700	JAXA
SSM/I F16	3	7	RSS
SSM/I F17	3	7	RSS
TMI11GHz	3	4	RSS
TMI37GHz	3	4	RSS
WindSat LF	3	7	RSS
WindSat MF	3	7	RSS
WindSat AW	3	7	RSS
AMSR-E LF	3	7	RSS
AMSR-E MF	3	7	RSS

センサー	Level	Version	提供
AMSR2	2	0.0	JAXA
AMSR-E	2	700	JAXA
TMI	3	4	RSS
WindSat	3	7	RSS
AMSR-E	3	7	RSS

Data period: 2012/7-2013/1(AMSR-E 2010/7-2011/1) Level 3 data means near-real time data with a 0.25° grid. 2013/12/12 download

* JAXA : Japan Aerospace Exploration Agency* RSS : Remote Sensing Systems

SST Data

SST data

The correlation coefficient of TMI SST data is quite low compared with other two products. Generally all products show overestimation for larger SST values. In particular the feature is clear for AMSR2. This may be due to diurnal heating effect, because the buoy SST is bulk temperature and satellite SSTs are sub-skin temperatures. The overestimation by AMSR2 is more remarkable than that by WindSat.

Equatorial Crossing Times

Satellite/Sensor	Ascending	Descending
GCOM-W1/AMSR2	13:30	01:30
Aqua/AMSR-E	13:30	01:30
DMSP F16/SSMI	17:32	05:32
DMSP F17/SSMI	17:47	05:47
TRMM/TMI	vari	iable
Coriolis/WindSat	18:01	06:01

We cannot see diurnal heating effect in WindSat data, because the observation time is 6:00 and 18:00.

We can see large overestimation in the data corresponding to wind speeds under 3m/sec. From these figures we can understand the overestimation is strongly related to diurnal heating.

SST data

We can see a similar feature of overestimation to AMSR2. However, this feature for AMSR-E is not so remarkable in RSS data. This result suggest that JAXA AMSR-E is more affected by diurnal heating compared with RSS AMSR-E data and the feature can be found for AMSR2 SST data.

SST Comparison

センサー	BIAS [m/s]	RMSE [m/s]	Correlation	number
AMSR2	0.230	0.488	0.846	1263
TMI	0.193	0.652	0.622	1217
WindSat	0.149	0.387	0.812	884

センサー	BIAS [m/s]	RMSE [m/s]	Correlation	number
AMSR-E JAXA	0.242	0.518	0.860	1381
AMSR-E RSS	0.026	0.402	0.881	1395

Time variation of Bias and RMS error for each SST product (2012_7-2013_1)

SSW Data

AMSR2 vs TRITON

AMSR-E vs TRITON

Overestimation of AMSR2 SSW

*BIAS = Satellite ave. - Buoy ave.

Sensor	BIAS [m/s]	RMSE [m/s]	Correlation	number
AMSR2	0.549	1.193	0.911	1328
SSM/I F16	0.022	1.037	0.902	1560
SSM/I F17	-0.075	0.933	0.916	1552
TMI11GHz	0.203	1.164	0.897	1220
TMI37GHz	0.062	0.923	0.932	1239
WindSat LF	0.144	0.829	0.936	1035
WindSat MF	-0.004	0.825	0.935	1067
Windsat AW	0.398	1.290	0.859	1510
AMSR-E LF	-0.154	0.867	0.919	1421
AMSR-E MF	-0.293	0.886	0.915	1423

AMSR2: 36 GHz, WindSat LF:10.7GHz, WindSat MF: 18.7 GHz, Windsat AW: all channels, AMSR-E LF: 10 GHz, AMSR-E MF : 18 GHz

Time variation of Bias and RMS error for each SSW product (2012_7-2013_1)

The bias remarkably increases after October.

We can clearly find remarkable overestimation by a lot of red points. Probably there are some problems in the algorithm for estimation of SSW using AMSR2 data.

BIAS [m/s]	RMSE [m/s]	Correlation	number
0.549	1.193	0.911	1328
(0.162)	(0.993)	(0.910)	(498)
0.022	1.037	0.902	1560
-0.075	0.933	0.916	1552
0.203	1.164	0.897	1220
0.062	0.923	0.932	1239
0.144	0.829	0.936	1035
-0.004	0.825	0.935	1067
0.398	1.290	0.859	1510
-0.154	0.867	0.919	1421
-0.293	0.886	0.915	1423
	$\begin{array}{l} \textbf{BIAS [m/s]} \\ 0.549 \\ (0.162) \\ 0.022 \\ 0.075 \\ 0.203 \\ 0.203 \\ 0.062 \\ 0.144 \\ 0.144 \\ -0.004 \\ 0.398 \\ -0.154 \\ -0.293 \end{array}$	BIAS [m/s]RMSE [m/s]0.5491.193(0.162)(0.993)0.0221.037-0.0750.9330.2031.1640.0620.9230.1440.829-0.0040.8250.3981.290-0.1540.867-0.2930.886	BIAS [m/s]RMSE [m/s]Correlation0.5491.1930.911(0.162)(0.993)(0.910)0.0221.0370.902-0.0750.9330.9160.2031.1640.8970.0620.9230.9320.1440.8290.936-0.0040.8250.9350.3981.2900.859-0.1540.8670.919-0.2930.8860.915

AMSR2: 36 GHz, WindSat LF:10.7GHz, WindSat MF: 18.7 GHz, Windsat AW: all channels, AMSR-E LF: 10 GHz, AMSR-E MF : 18 GHz

Summary

• We evaluated AMSR2 SST and SSW data by TRITON buoy SST and SSW data. Basically the accuracy is comparable with other products. Also AMSR2 SST is considerably affected by diurnal heating compared with other products depending on the observation time. The bias for AMSR2 SSW remarkably increases after October 2012. Probably there are some problems in the algorithm for estimation of SSW using AMSR2 data.

Thank you!

Backup slides

Global intercomparison with other products

SSW Products (daily, 0.25° grid)

Name (Abbr.)	Spatial Res.	Sensor	Period	Input data	Organization
AMSR2	0.25°	radiometer	2-Jul-2012 to present	AMSR2	JAXA
SSMIS Ocean Products	0.25°	radiometer	1-Dec-2003 to present 1-Oct-2003 to present	SSMIS F16 SSMIS F17	RSS
ASCAT L3 data	0.25°	scatterometer	21-Mar-2007 to present	ASCAT	IFREMER
WindSat (*all-weather surface wind)	0.25°	radiometer	5-Feb-2003 to present	WindSat	RSS

* WSPD_AW: 6.8 10.7 18.7 23.8 37.0 GHz (polarization: VH) cf. WSPD_LF: 10.7 18.7 23.8 37.0 GHz , WSPD_MF: 18.7 23.8 37.0 GHz [Note] Description of WindSat Data Products http://www.ssmi.com/windsat/windsat_data_description.html

Daily SSW - mean differences(2012_7-2013_1) each product-AMSR2

From this panel, AMSR2 wind speeds are considerable weaker than other products in the southern hemisphere and stronger in the northern hemisphere. Also AMSR2 wind speeds are stronger than other products over the Arabian Sea and western North Pacific.

Statistics (each product VS AMSR2) (2012_7-2013_1) SSW

The mean difference between AMSR2 and other SSW products is less than 0.2 m/sec and the RMS difference is about 2.0 m/sec.

Wind speed	Mean diff.	RMSD	Corr.	Number
SSMIS F16	+0.093	1.979	0.850	78112729
SSMIS F17	-0.026	1.980	0.851	77810398
WindSatAW	+0.185	2.088	0.836	67978453
ASCAT	-0.003	1.941	0.848	85916857

(W order) Mean diff. : -0.1 - +0.1 RMSD : 2.0

